

Technical Specification MEF 31.0.1

Amendment to Service OAM SNMP MIB for Fault Management

January 2012

Disclaimer

The information in this publication is freely available for reproduction and use by any recipient and is believed to be accurate as of its publication date. Such information is subject to change without notice and the Metro Ethernet Forum (MEF) is not responsible for any errors. The MEF does not assume responsibility to update or correct any information in this publication. No representation or warranty, expressed or implied, is made by the MEF concerning the completeness, accuracy, or applicability of any information contained herein and no liability of any kind shall be assumed by the MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or user of this document. The MEF is not responsible or liable for any modifications to this document made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication or otherwise:

any express or implied license or right to or under any patent, copyright, trademark or trade secret rights held or claimed by any MEF member company which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor

any warranty or representation that any MEF member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor

any form of relationship between any MEF member companies and the recipient or user of this document.

Implementation or use of specific Metro Ethernet standards or recommendations and MEF specifications will be voluntary, and no company shall be obliged to implement them by virtue of participation in the Metro Ethernet Forum. The MEF is a non-profit international organization accelerating industry cooperation on Metro Ethernet technology. The MEF does not, expressly or otherwise, endorse or promote any specific products or services.

© The Metro Ethernet Forum 2012. All Rights Reserved.

Table of Contents

1.	Introduction	. 1
6.	SOAM TC MIB Requirements	. 1
8.	SOAM TC MIB Definitions	. 2
10.	References	. 8

1.	Intro	duc	tion
	11111	auo	LIVII

4

1

The purpose of this document is to update the TC MIB requirements to include the Textual Conventions needed for the MEF SOAM PM MIB. The updated text is indicated by Tracked Changes for the appropriate sections.

5 6

7 The amendment makes the following changes:

8

- 9 Section 6:
- Adds the following textual conventions: *MefSoamTcAvailabilityType*,
- $11 \qquad \textit{MefSoamTcDelayMeasurementBinType}, \textit{MefSoamTcMeasurementPeriodType},$
- 12 *MefSoamTcSesssionType* and *MefSoamTcStatusType*.

13

- 14 Section 8:
- 15 Adds the following textual conventions to the MEF-SOAM-TC-MIB:
- $16 \qquad \textit{MefSoamTcAvailabilityType}, \textit{MefSoamTcDelayMeasurementBinType},$
- 17 MefSoamTcMeasurementPeriodType, and MefSoamTcStatusType, updates the date, and the
- 18 references to MEF 30 and PM IA.

19

- 20 Section 10:
- 21 Updates reference to MEF 30 and PM IA.

2223

24

25

6. SOAM TC MIB Requirements

- 26 The SOAM TC MIB defines the Textual Conventions that are to be used with other MEF SOAM
- 27 MIB modules.
- 28 The SOAM TC MIB defines textual conventions for the following:
- *MefSoamTcAvailabilityType* defines the availability of a MEP during a loss measurement session
- MefSoamTcConnectivityStatusType the connectivity status type of a MEG or MEP
- MefSoamTcDataPatternType defines the data pattern type used in Data TLVs
- *MefSoamTcDelayMeasurementBinType* distinguishes between measurement bins for Frame Delay, Frame Delay Range, and Inter-frame Delay variation
- MefSoamTcIntervalTypeAisLck defines the interval for sending AIS and LCK PDUs
- *MefSoamTcMegIdType* defines the MEG ID type
- *MefSoamTcMeasurementPeriodType* indicates the transmission time between the SOAM PM frames for a PM session
 - *MefSoamTcOperationTimeType* defines when an operation is initiated or stopped

39

- *MefSoamTcSessionType* defines the type of a PM session (proactive or on-demand)
 - *MefSoamTcStatusType* defines the status of a PM session (measurement instance) of a MEP
 - *MefSoamTcTestPatternType* defines the test pattern used in Test TLVs

45

41 42

8. SOAM TC MIB Definitions

```
46
47
48
49
     MEF-SOAM-TC-MIB DEFINITIONS ::= BEGIN
      __ **********************************
50
51
52
53
54
55
56
57
58
59
60
      -- TEXTUAL-CONVENTIONS MIB for Metro Ethernet Forum (MEF) SOAM (Service
      -- Operations, Administration, and Maintenance)
     IMPORTS
         MODULE-IDENTITY, enterprises, Unsigned32
              FROM SNMPv2-SMI
                                    -- RFC 2578
         TEXTUAL-CONVENTION
              FROM SNMPv2-TC;
                                      -- RFC 2579
     mefSoamTcMib MODULE-IDENTITY
61
62
         LAST-UPDATED "201201100000Z" -- January 10, 2012
         ORGANIZATION
                          "Metro Ethernet Forum"
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
         CONTACT-INFO
             "Web URL: http://metroethernetforum.org/
              E-mail: mibs@metroethernetforum.org
              Postal: Metro Ethernet Forum
                       6033 W. Century Boulevard, Suite 830
                       Los Angeles, CA 90045
                       U.S.A.
              Phone:
                       +1 310-642-2800
                       +1 310-642-2808"
              Fax:
          DESCRIPTION
             "This MIB module defines the textual conventions used
             throughout the Ethernet Services Operations, Administration
              and Maintenance MIB modules.
              Copyright 2010 Metro Ethernet Forum.
              All rights reserved."
79
80
81
82
83
84
85
86
87
88
99
91
92
93
94
95
96
         REVISION
                      "201201100000Z" -- January 10, 2012
         DESCRIPTION "Updated text to add textual conventions for the SOAM PM MIB."
                      "201010110000Z" -- October 11, 2010
         REVISION
         DESCRIPTION
             "Initial Version."
          ::= { enterprises mef(15007) mefSoam(1) 1 }
      __ ********************************
         Reference Overview
     __
         A number of base documents have been used to create the Textual Conventions
     -- MIB, the SOAM-PM MIB and SOAM-FM MIB. The following are the
         abbreviations for the baseline documents:
          [CFM] refers to 'Connectivity Fault Management', IEEE 802.1ag-2007,
              December 2007
          [MEF7.1] refers to MEF 7.1 'Phase 2 EMS-NMS Information Model',
```



```
97
98
99
              October 2009
          [MEF17] refers to MEF 17 'Service OAM Requirements & Framework - Phase 1',
              April 2007
100
          [MEF SOAM-PM] refers to MEF 35 'Service OAM Performance Monitoring
101
              Implementation Agreement', January 2012
102
          [MEF SOAM-FM] refers to MEF 30 'Service OAM Fault Management Implementation
103
              Agreement', January 2011
104
          [Q.840.1] refers to 'ITU-T Requirements and analysis for NMS-EMS
105
              management interface of Ethernet over Transport and Metro Ethernet
106
              Network (EoT/MEN)', March 2007
107
          [Y.1731] refers to ITU-T Y.1731 'OAM functions and mechanisms for Ethernet
108
              based networks', February 2008
109
110
111
      __ **************************
112
      -- Textual Conventions (TC)
113
      114
      -- TC definitions are placed in alphabetical order
115
116
      MefSoamTcAvailabilityType ::= TEXTUAL-CONVENTION
117
          STATUS
                      current
118
          DESCRIPTION
119
              "This enumeration data type defines the availability of a session,
120
121
122
123
124
125
126
127
128
129
130
131
132
133
              measured by a loss measurement session.
              The valid enumerated values associated with this type are:
              available(1)
                                 indicates the MEP is available.
              unavailable(2)
                                 indicates the MEP is unavailable.
                                 indicates the availability is not known, for
              unknown(3)
                                 instance because insufficient time has passed to
                                 make an availability calculation, the time has been
                                 excluded because of a maintenance interval, or because
                                 availability measurement is not enabled.
134
          SYNTAX
                      INTEGER {
135
                        available (1),
136
137
138
                        unavailable(2),
                        unknown(3)
139
140
      MefSoamTcConnectivityStatusType ::= TEXTUAL-CONVENTION
141
          STATUS
                      current
142
          DESCRIPTION
143
              "This enumeration data type defines the connectivity status
144
              of a Maintenance Entity (ME) or a Maintenance Entity Group (MEG).
145
146
              The valid enumerated values associated with this type are:
147
148
              inactive(1)
                                 indicates an inactive connectivity state of a group
149
150
151
152
153
                                 and refers to the inability to exchange SOAM PDU frame
                                 among any of the entities in a group.
              active(2)
                                 indicates an active connectivity state of a group
                                  and refers to the ability to exchange SOAM PDU frames
154
                                 among all the entities in a group
155
156
157
158
              partiallyActive(3) indicates a partially active connectivity state of a
                                  group and refers to the ability to exchange SOAM PDU
                                  frames among some entities of a group. This enumerated
159
                                 value is only applicable for Multipoint-to-Multipoint
160
                                 MEG.
```



```
161
162
           REFERENCE
163
               "[MEF17] 9.2 and [MEF7.1] III.2 Enumeration"
164
                        INTEGER {
           SYNTAX
165
                          inactive(1),
166
                          active(2),
167
                          partiallyActive(3)
168
169
170
       MefSoamTcDataPatternType ::= TEXTUAL-CONVENTION
171
           STATUS
                        current
172
173
           DESCRIPTION
               "This enumeration data type indicates the type of data pattern to be
174
               sent in an OAM PDU Data TLV.
175
176
               The valid enumerated values associated with this type are:
177
178
                                         indicates the Data TLV contains all zeros
               zeroPattern(1)
179
               onesPattern(2)
                                         indicates the Data TLV contains all ones
180
181
           SYNTAX
                        INTEGER {
182
                          zeroPattern(1),
183
                          onesPattern(2)
184
185
186
187
       MefSoamTcDelayMeasurementBinType ::= TEXTUAL-CONVENTION
           STATUS
                        current
188
           DESCRIPTION
189
               "This enumeration data type is used to distinguish between
190
               measurement bins for Frame Delay, Frame Delay Range, and
191
               Inter-frame Delay variation.
192
193
               The valid enumerated values associated with this type are:
194
195
               twoWayFrameDelay(1)
                                             indicates a measurement bin for two-way
196
                                            Frame Delay.
197
                forwardFrameDelay(2)
                                             indicates a measurement bin for one-way
198
                                             Frame Delay in the forward direction.
199
200
201
               backwardFrameDelay(3)
                                             indicates a measurement bin for one-way
                                            Frame Delay in the backward direction.
               twoWayIfdv(4)
                                             indicates a measurement bin for two-way
\overline{202}
                                             Inter-frame Delay Variation.
203
               forwardIfdv(5)
                                             indicates a measurement bin for one-way
204
                                             Inter-frame Delay Variation in the forward
205
                                             direction.
206
               backwardIfdv(6)
                                             indicates a measurement bin for one-way
207
                                             Inter-frame Delay Variation in the backward
208
                                             direction.
209
               twoWayFrameDelayRange(7)
                                             indicates a measurement bin for two-way
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                                             Frame Delay Range.
               forwardFrameDelayRange(8)
                                            indicates a measurement bin for one-way
                                             Frame Delay Range in the forward direction.
               backwardFrameDelayRange(9) indicates a measurement bin for one-way
                                             Frame Delay Range in the backward direction.
           SYNTAX
                        INTEGER {
                          twoWayFrameDelay(1),
                           forwardFrameDelay(2),
                          backwardFrameDelay(3),
                          twoWayIfdv(4),
                           forwardIfdv(5),
                          backwardIfdv(6),
                          twoWayFrameDelayRange(7),
\overline{224}
                          forwardFrameDelayRange(8),
```

```
backwardFrameDelayRange(9)
MefSoamTcIntervalTypeAisLck ::= TEXTUAL-CONVENTION
    STATUS
                current
   DESCRIPTION
        "This enumeration data type defines the AIS/LCK transmission time
        interval for an Alarm Indication Signal (AIS) or LCK frame.
        The valid enumerated values associated with this type are:
         oneSecond(1) indicates a one second transmission interval.
        oneMinute(2) indicates a one minute transmission interval.
   REFERENCE
       "[MEF7.1] III.2 Enumeration, [Y.1731] 7.4, 7.6"
                INTEGER {
                  oneSecond(1),
                  oneMinute(2)
MefSoamTcMeasurementPeriodType ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "d"
    STATUS
                current
   DESCRIPTION
       "Indicates the transmission time between the SOAM PM frames for a
       PM session, in ms.
   REFERENCE
       "[MEF SOAM-PM] R56"
   SYNTAX
              Unsigned32 (3..3600000)
MefSoamTcMegIdType ::= TEXTUAL-CONVENTION
    STATUS
               current.
   DESCRIPTION
       "This enumeration data type indicates the format of the MEG ID
       that is sent in the OAM PDUs. Types 1-4 are more fully explained
       in [CFM] 17.5. Type 32 is from [Y.1731] Annex A.
        The valid enumerated values associated with this type are:
        primaryVid(1)
                          Primary VLAN ID.
                           12 bits represented in a 2-octet integer:
                           - 4 least significant bits of the first
                               byte contains the 4 most significant
                               bits of the 12 bits primary VID
                           - second byte contains the 8 least
                             significant bits of the primary VID
                              0 1 2 3 4 5 6 7 8
                              +-+-+-+-+-+-+
                              |0 0 0 0| (MSB) |
                              +-+-+-+-+-+-+
                              | VID LSB
                              +-+-+-+-+-+-+
                           RFC2579 DisplayString, except that the
        charString(2)
                           character codes 0-31 (decimal) are not
                           used. (1..45) octets
        unsignedInt16 (3) 2-octet integer/big endian
        rfc2865VpnId(4)
                          RFC 2685 VPN ID
                           3 octet VPN authority Organizationally
```

```
289
290
291
292
293
294
295
296
297
298
<u> 2</u>99
\overline{3}00
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
3\overline{2}\overline{3}
\bar{3}\bar{2}4
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
```

```
Unique Identifier followed by 4 octet VPN
                           index identifying VPN according to the OUI:
                               0 1 2 3 4 5 6 7 8
                               +-+-+-+-+-+-+
                               | VPN OUI (MSB) |
                               +-+-+-+-+-+-+
                               | VPN OUI |
                               +-+-+-+-+-+-+
                               | VPN OUI (LSB) |
                               +-+-+-+-+-+-+
                               |VPN Index (MSB)|
                               +-+-+-+-+-+-+
                               | VPN Index
                               +-+-+-+-+-+-+
                               | VPN Index
                               +-+-+-+-+-+-+-+
                               |VPN Index (LSB)|
                               +-+-+-+-+-+-+
       iccBased (32)
                          ICC-based MEG ID Format, thirteen octet field
    REFERENCE
       "[Y.1731] Table A-1, [CFM] 17.5, 21.6.5.1"
    SYNTAX
               INTEGER {
                 primaryVid (1),
                 charString (2),
                 unsignedInt16 (3),
                 rfc2865VpnId (4),
                  iccBased (32)
MefSoamTcOperationTimeType ::= TEXTUAL-CONVENTION
    STATUS
               current
   DESCRIPTION
       "This enumeration data type indicates the operation type start
       or end time to indicate when an OAM operation is
        initiated or stopped.
        The valid enumerated values associated with this type are:
                      The operation is never started or is stopped immediately
       none(1)
                      if used to indicate a start time, or the operation never
                      ends if it is used to indicate an end time
        immediate(2) The operation is to begin immediately
        relative(3)
                      The operation is to begin at a relative time from the
                      current time or stop a relative time after it has started
       fixed(4)
                     The operation is to begin/stop at the given UTC time/date
    REFERENCE
       "[SOAM-PM] R2, [SOAM-FM] 8.7"
    SYNTAX
               INTEGER {
                  none(1),
                  immediate(2),
                 relative(3),
                  fixed(4)
                }
MefSoamTcSessionType ::= TEXTUAL-CONVENTION
    STATUS
               current
    DESCRIPTION
       "This enumeration data type defines the status of PM session of a MEP.
```



```
352
353
354
355
356
357
358
                The valid enumerated values associated with this type are:
                proactive(1)
                                  indicates the measurement instance is Proactive
                                  indicates the measurement instance is On-demand
               onDemand(2)
           SYNTAX
                        INTEGER {
                          proactive(1),
359
                           onDemand(2)
360
361
                         }
362
363
364
       MefSoamTcStatusType ::= TEXTUAL-CONVENTION
           STATUS
                    current
           DESCRIPTION
365
               "This enumeration data type defines the status of PM session of a MEP.
366
367
               The valid enumerated values associated with this type are:
368
369
                                  indicates the measurement instance is active
                active(1)
370
                                  indicates the measurement instance is not active
               notActive(2)
371
372
           SYNTAX
                        INTEGER {
373
                          active(1),
374
375
376
377
378
                           notActive(2)
       MefSoamTcTestPatternType ::= TEXTUAL-CONVENTION
           STATUS
                    current
379
379
           DESCRIPTION
380
381
382
383
384
385
386
               "This enumeration data type indicates the type of test pattern to be
                sent in an OAM PDU Test TLV.
               The valid enumerated values associated with this type are:
                               Null signal without CRC-32
               null(1)
               nullCrc32(2) Null signal with CRC-32
387
                               PRBS 2^31-1 without CRC-32
               prbs(3)
388
               prbsCrc32(4) PRBS 2^31-1 with CRC-32
389
390
391
392
           REFERENCE
              "[MEF7.1], Appendix III.2 Enumeration, [Y.1731] 7.7"
           SYNTAX
                        INTEGER {
393
                          null(1),
394
                          nullCrc32(2),
395
                          prbs(3),
396
                           prbsCrc32(4)
397
398
399
       END
400
```

409

410

413

414

423

424

425

426

427

428

429

430

431

IV. REIELEIGES	10	. R	Refer	enc	es
----------------	----	-----	-------	-----	----

- 403 [1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, March 1997. (Normative)
- 405 [2] McCloghrie, K., et al., Structure of Management Information Version 2 (SMIv2), 406 RFC 2578, April 1999.
- Harrington, D, et al, *An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks*, RFC 3411, December 2002.
 - [4] Heard, C., Guidelines for Authors and Reviewers of MIB Documents, RFC 4181, September, 2005.
- 411 [5] Metro Ethernet Forum, MEF 4, Metro Ethernet Network Architecture Framework 412 Part 1: Generic Framework, May 2004.
 - [6] Metro Ethernet Forum, MEF 7.1, *Phase 2 EMS-NMS Information Model*, October 2009.
- 415 [7] Metro Ethernet Forum, MEF 10.2, *Ethernet Services Attributes Phase* 2, October 2009.
- 417 [8] Metro Ethernet Forum, MEF 15, Requirements for Management of Metro Ethernet 418 Phase 1 Network Elements, November 2005.
- 419 [9] Metro Ethernet Forum, MEF 17, Service OAM Requirements & Framework Phase 420 1, April 2007.
- 421 [10] Metro Ethernet Forum, MEF 30, Service OAM Fault Management Implementation 422 Agreement, January 2011
 - [11] Metro Ethernet Forum, MEF 35, Service OAM Performance Monitoring Implementation Agreement, January 2012
 - [12] International Telecommunication Union, Recommendation G.8011/Y.1307, *Ethernet over Transport Ethernet services framework*, August 2004.
 - [13] International Telecommunication Union, Recommendation G.8021/Y.1341, *Characteristics of Ethernet transport network equipment functional blocks*, December 2007.
 - [14] International Telecommunication Union, Recommendation G.8051/Y.1345, Management aspects of the Ethernet-over-Transport (EoT) capable network element, October 2007.
- International Telecommunication Union, Recommendation G.8051/Y.1345, Management aspects of the Ethernet-over-Transport (EoT) capable network element, October 2007.
- 435 [16] International Telecommunication Union, Recommendation Q.840.1, Requirements
 436 and Analysis for NMS-EMS Management Interface of Ethernet over Transport and
 437 Metro Ethernet Network, March 2007

438 439	[17]	International Telecommunication Union, Recommendation Y.1731, <i>OAM functions and mechanisms for Ethernet based Networks</i> , February 2008.
440 441	[18]	IEEE Std 802.1Q-2005, <i>IEEE Standard for Local and metropolitan area networks</i> Virtual Bridged Local Area Networks, 19 May 2006
442 443	[19]	IEEE Std 802.1ad-2005, IEEE Standard for Local and metropolitan area networks – Virtual Bridged Local Area Networks Amendment 4: Provider Bridges, May 2006.
444 445 446	[20]	IEEE Std 802.1ag-2007, <i>IEEE Standard for Local and metropolitan area networks – Virtual Bridged Local Area Networks Amendment 5: Connectivity Fault Management</i> , December 2007.
447 448 449 450 451	[21]	IEEE Std 802.3-2008, <i>IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications</i> , 26 December 2008.
452 453 454	[22]	IEEE Std 802.1ap-2008, IEEE Standard for Local and metropolitan area networks - Virtual Bridged Local Area Networks Amendment 8: Management Information Base (MIB) Definitions for VLAN Bridges
455 456 457	[23]	International Organization for Standardization, <i>International Standard 8824 Information processing systems - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1)</i> , December, 1987.
458		